Degenerations of Sklyanin algebra and Askey-Wilson polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L635
(http://iopscience.iop.org/0305-4470/26/15/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 19:01

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Degenerations of Sklyanin algebra and Askey-Wilson polynomials

A S Gorsky $\ddagger \S$ and A V Zabrodin $\dot{+}$
\dagger Institute of Theoretical Physics, Box 803, S-751 08, Uppsala, Sweden
\ddagger Enrico Fermi Institute, and Mathematical Disciplines Center, University of Chicago, Chicago IL 60637, USA

Received 5 March 1993

Abstract

A new trigonometric degeneration' of the Sklyanin algebra is found and the functional realization of its representations in space of polynomials in one variable is studied. A further contraction gives the standard quantum algebra $U_{q}(s l(2))$. It is shown that the degenerate Sklyanin algebra contains a subalgebra isomorphic to algebra of functions on the quantum sphere $(S U(2) / S O(2))_{q}{ }^{1 / 2}$. The diagonalization of general quadratic form in its generators leads in the functional realization to the difference equation for Askey-Wilson polynomials.

Sklyanin algebra (SA) [1] plays a very important role in the theory of quantum integrable systems being the algebra of observables in the models with elliptic R-matrix. It is the algebra with quadratic relations that follow from the Yang-Baxter equation for quantum monodromy matrices. The trigonometric degeneration of the R-matrix gives rise to a number of the well known exactly solvable models like $X X Z$ spin chain, sine-Gordon, etc. In this case the SA degenerates [2] to the quantum group $U_{q}(s I(2))$-deformation of the universal enveloping algebra of $s l(2)$ introduced by Kulish and Reshetikhin [3] and then extensively studied in more general mathematical context [4].

In this letter, we show that $U_{q}(s l(2))$ is a very particular case of a more general family of trigonometric degenerations of the sa. More precisely, the standard $U_{q}(s l(2))$ can be obtained as further contraction of the degenerate SA. On the other hand, we show that the trigonometric limit of SA contains a subalgebra isomorphic to $F u n_{q}{ }^{1 / 2}(S U(2) / S O(2)$)-the algebra of functions on the quantum sphere $(S U(2) / S O(2))_{q^{1 / 2}}$. The generators of this algebra can be realized as difference operators acting on polynomials in one variable. This realization follows directly from the representation theory of SA [1]. We argue that the diagonalization problem for general quadratic form in the generators (which is commonly interpreted as the Hamiltonian of a proper physical system) is equivalent to the difference Hamiltonian of a proper physical system) is equivalent to the difference equation for the Askey-Wilson polynomials [5]. In particular, the diagonalization of the ' $\mathrm{SO}(2)$-invariant' element of $F u n_{q^{1 / 2}}(S U(2) / S O(2)$) (i.e.. the generator of the commutative algebra $F u n_{q}{ }^{1 / 2}(S O(2) \backslash S U(2) \backslash S O(2))$ leads to the Rogers-Askey-Ismail polynomials [6]. At the same time these polynomials are known to give zonal spherical functions on the quantum spheres $[7,8]$.

[^0]The SA is the two-parametric deformation of $U_{q}(g l(2))$. It is the algebra with four generators $S_{0}, S_{1}, S_{2}, S_{3}$ and the following quadratic relations [1]:

$$
\begin{align*}
& {\left[S_{0,} S_{\lambda}\right]=\mathrm{i} J_{\mu \nu}\left(S_{\mu}, S_{\nu}\right)} \tag{1}\\
& {\left[S_{\lambda}, S_{\mu}\right]=\mathrm{i}\left(S_{0}, S_{\nu}\right)}
\end{align*}
$$

Here [,] and (,) are commutator and anticommutator respectively and (λ, μ, ν) stands for any cyclic permutation of $(1,2,3)$. The structure constants $J_{\mu \nu}$ are parametrized as follows: $J_{\mu \nu}=\left(J_{\mu}-J_{\lambda}\right) / J_{\nu}$ where

$$
\begin{align*}
& J_{1}=\theta_{4}(2 \gamma) \theta_{4}(0) /\left(\theta_{4}(\gamma)\right)^{2} \\
& J_{2}=\theta_{3}(2 \gamma) \theta_{3}(0) /\left(\theta_{3}(\gamma)\right)^{2} \tag{2}\\
& J_{3}=\theta_{2}(2 \gamma) \theta_{2}(0) /\left(\theta_{2}(\gamma)\right)^{2}
\end{align*}
$$

We use the standard notation [9] for the theta functions with elliptic nome $h=$ $\exp (\mathrm{i} \pi r)$. The two deformation parameters are just h and γ; they are supposed to be real. The two central (Casimir) elements are given by

$$
\begin{align*}
& K_{0}=\left(S_{0}\right)^{2}+\left(S_{1}\right)^{2}+\left(S_{2}\right)^{2}+\left(S_{3}\right)^{2} \\
& K_{1}=J_{1}\left(S_{1}\right)^{2}+J_{2}\left(S_{2}\right)^{2}+J_{3}\left(S_{3}\right)^{2} \tag{3}
\end{align*}
$$

Trigonometric degeneration of the SA can be obtained by tending h to 0 . To do this let us redefine the generators as follows:

$$
\begin{align*}
& A=\mathrm{i} h^{-1 / 4}\left(S_{0}-\tanh (\pi \gamma) S_{3}\right) /(4 \sinh (\pi \gamma)) \\
& D=\mathrm{i} h^{-1 / 4}\left(S_{0}+\tanh (\pi \gamma) S_{3}\right) /(4 \sinh (\pi \gamma)) \\
& C=\mathrm{i} h^{ \pm 1 / 4}\left(S_{1}-\mathrm{i} S_{2}\right) /(2 \sinh (2 \pi \gamma)) \tag{4}\\
& B=\mathrm{i} h^{-3 / 4}\left(S_{1}+\mathrm{i} S_{2}\right) /(8 \sinh (2 \pi \gamma))
\end{align*}
$$

We consider only the representations of series (a) in terminology [1]. It follows from the realization of the generators of SA by difference operators [1] that these combinations have a finite limit when h goes to 0 . Substituting (4) into (1) and denoting $q=\exp (-2 \pi \gamma)$ one obtains the relations in the degenerate SA :

$$
\begin{align*}
& D C=q C D \quad C A=q A C \tag{5}\\
& {[A, D]=(1 / 4)\left(q-q^{-1}\right)^{3} C^{2}} \tag{6}\\
& {[B, C]=\left(A^{2}-D^{2}\right) /\left(q-q^{-1}\right)} \tag{7}\\
& A B-q B A=q D B-B D=-(1 / 4)\left(q^{2}-q^{-2}\right)(D C-C A) \tag{8}
\end{align*}
$$

We would like to stress that though $J_{12}=0$ when $h=0$ and naively A and D would commute the careful limiting procedure taking into account the order in h of each term in (1) gives just the non-vanishing commutator (6).

According to the general representation theory of the SA developed in [1] the finite dimensional irreducible representations of the limiting algebra.(5)-(8) are parametrized by a non-negative integer or half-integer number j (spin of the representation). The spin- j representation). The spin- j representation can be realized in $(2 j+1)$-dimensional space of polynomials of degree $2 j$ by the following difference operators:

$$
\begin{equation*}
C=\left(\frac{2}{\left(q-q^{-1}\right)}\right)\left(\frac{1}{\left(z-z^{-1}\right)}\right)\left(T_{+}-T_{-}\right) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& A=q^{-j}\left(\frac{1}{\left(z-z^{-1}\right)}\right)\left(z T_{+}-z^{-1} T_{-}\right) \tag{10}\\
& D=q^{j}\left(\frac{1}{\left(z-z^{-1}\right)}\right)\left(z T_{-}-z^{-1} T_{+}\right) \tag{11}\\
& B=\left(\frac{1}{\left(2\left(q-q^{-1}\right)\right.}\right)\left(\frac{1}{\left(z-z^{-1}\right)}\right)\left(q^{2)}\left(z^{2} T_{-}-z^{-2} T_{+}\right)\right. \tag{12}\\
& \left.\quad \quad-q^{-2 J}\left(z^{2} T_{+}-z^{-2} T_{-}\right)-\left(q+q^{-1}\right)\left(T_{+}-T_{-}\right)\right)
\end{align*}
$$

where $T_{+} f(z)=f(q z), T_{-} f(z)=f\left(q^{-1} z\right)$. In the classical limit $q=1$ (9)-(12) give the standard functional realization of the $s l(2)$-generators C, B and $H=(D-A) /(4 \pi \gamma)$ by differential operators.

It is remarkable that the standard quantum algebra $U_{q}(s l(2))$ can be obtained from (5)-(8) by the contraction procedure: B to B, A to $\varepsilon A, D$ to $\varepsilon D, C$ to $\varepsilon^{2} C ; \varepsilon$ tends to zero. For the representation (9)-(12) the contraction effectively means that z goes to infinity and we can formally put z^{-1} equal to 0 thus obtaining the well known realization of $U_{q}(s l(2))$ in space of holomorphic functions.:

One can see from (3) that the trigonometric limit of the central element $K_{0}-K_{1}$ is proportional to $A D+(1 / 4 q)\left(q-q^{-1}\right)^{2} C^{2}$. It follows from (9)-(12) that the value of this Casimir element does not depend on j and is equal to 1 . Therefore, this operator can be put equal to 1 :

$$
\begin{equation*}
A D+\frac{1}{(4 q)}\left(q-q^{-1}\right)^{2} C^{2}=1 \tag{13}
\end{equation*}
$$

This relation is to be added to (5)-(8).
Note that A, D, C generate the subalgebra with the relations (5), (6), (13). Remarkably enough, it is isomorphic to the algebra of functions on the quantum sphere ($S U(2) / S O(2))_{q}{ }^{1 / 2}[8]$ (note this change of q to $q^{1 / 2}!$). Let us point out that the generator $A+D$ (the former S_{0}) corresponds under this isomorphism to the simplest non-trivial element of $\mathrm{Fun}_{q^{1 / 2}}(S u(2) / S O(2))=F_{q^{1 / 2}}$ invariant with respect to the quasiregular action of the proper 'twisted primitive elements' [7] of $U_{q^{1 / 2}(s u(2))}$ representing the 'infinitesimal $S O(2)$-rotation'. In other words, the (commutative) algebra of functions on the double quantum coset space $F u n_{q} 1 / 2(S O(2) \backslash S U(2) S O(2))$ is generated by 1 and $A+D$. The operators (9)-(11) form a (reducible) representation of $F_{q}^{1 / 2}$.

Now let us turn to the problem of diagonalization of a quadratic form in generators of $F_{q}^{1 / 2}$ in the space of spin- j representation of the whole algebra (5)-(8). Such quadratic operator could be interpreted as the Hamiltonian of a proper physical system. It is known $[10,11]$ that in the classical sl(2) case all exactly solvable problems of quantum mechanics on the line can be obtained in this way.

Consider the general quadratic form in A, D, C :

$$
\begin{equation*}
Q(r, k ; \alpha, \beta)=q^{r} A^{2}+q^{-r} D^{2}-\frac{1}{4}\left(q^{2 k+1}+q^{-2 k-1}\right)\left(q-q^{-1}\right)^{2} C^{2}+\left(q-q^{-1}\right)(\alpha A C+\beta D C) \tag{14}
\end{equation*}
$$

where r, k, α, β are arbitrary parameters. Substituting (9)-(11) into (14) we obtain the following eigenvalue equation for Laurent polynomials in $z P_{m}(z)$:

$$
\begin{equation*}
Q(r, k ; \alpha, \beta) P_{m}(z)=E_{m} P_{m}(z) \tag{15}
\end{equation*}
$$

One can see that when $E_{m}=q^{2(j-m)-r}+q^{-2(j-m)+r}$ (15) coincides with the difference equation for Askey-Wilson polynomials $P_{m}\left(\left(z+z^{-1}\right) / 2 ; a, b, c, d \mid q^{2}\right)\left(=P_{m}(z)\right.$ for brevity)

$$
\begin{gather*}
\left.A(z)\left(P_{m}\left(q^{2} z\right)-P_{m}(z)\right)+A\left(z^{-1}\right)\right)+A\left(z^{-1}\right)\left(P_{m}\left(q^{-2} z\right)-P_{m}(z)\right) \tag{16}\\
=\left(q^{-2 m}-1\right)\left(1-a b c d q^{2 m-1}\right) P_{m}(z)
\end{gather*}
$$

where $A(z)=(1-a z)(1-b z)(1-c z)(1-d z) /\left(\left(1-z^{2}\right)\left(1-q^{2} z^{2}\right)\right)$ and the parameters a, b, c, d are expressed through r, k, α, β as follows:

$$
\begin{align*}
&(1-a z)(1-b z)(1-c z)(1-d z) \\
&= 1+2 \beta q^{r+1-j}-\left(q^{2 k+1}+q^{-2 k-1}\right) q^{r+1-2 j} z^{2} \tag{17}\\
&+2 \alpha q^{r+1-3 j} z^{3}+q^{2 r+2-4 j} z^{4} .
\end{align*}
$$

In particular, for $r=k=\alpha=\beta=0$ we have $Q(0,0,0,0)=(A+D)^{2}-2$ and (16) reduces to the equation for the Rogers-Askey-Ismail polynomials $C_{m}\left(\left(z+z^{-1}\right) / 2 ; q^{-2 j} \mid q^{2}\right)$ [6] which are also known as Macdonald's polynomials for the root system A_{1} [12]. So the eigenfunctions of the $S O(2)$-invariant element of $F_{q}{ }_{q}^{1 / 2}$ discussed above are expressed in terms of these polynomaials. We note also that at the same time the Askey-Wilson polynomials (with particular values of the parameters) provide the most general family of zonal spherical functions on the quantum group $U_{q}(s u(2))$ [7].

In conclusion let us make a few remarks. The diagonalization of a more general quadratic form in all the generators including B leads to a more complicated eigenvalue difference equation corresponding to the so-called quasi-exactly solvable problems [11] in the classical limit. In case of the contraction to $U_{q}(s l(2))$ the little Jacobi polynomials appear.

The role of the quadratic algebra (5)-(8) (obtained as a result of the limiting procedure from the SA) in integrable models with trigonometric R-matrix is not clear enough at the moment. However, as it was shown in [13] the scattering of dressed excitations in the $X X Z$ antiferromagnetic spin chain can be described in terms of zonal spherical elements of the algebra of functions on the quantum sphere and/or hyperboloid.

We wish to thank P G O Freund and M A Olshanetsky for illuminating discussions. $A Z$ is grateful to the Mathematical Disciplines Center, University of Chicago where this work was completed for the hospitality and support AG thanks A Niemi for the warm hospitality at the Institute of Theoretical Physics.

References

[1] Sklyanin E K. 1982 Func. Anal. Appl. 16 263-70; 1983 Func. Anal. Appl. 17 273-84
[2] Sklyanin E K 1985 Usp. Mat. Nauk 40214
[3] Kulish P P and Reshetikhin N Yu 1980 Zap. Nauchn. Semin. LOMI 101 101-10
[4] Drinfeld V G 1986 Zap. Nauchn. Semin. LOMI 155 18-49 Jimbo M 1985 Lett. Math. Phys. 10 63-9
Faddeev L D, Reshetikhin N Yu and Takhtadjan L A 1989 Algebra i Analis 1 178-206
[5] Askey R and Wilson J 1985 Mem. Am. Math. Soc. No 319
[6] Askey R and Ismail M 1983 Studies in Pure Mathematics (Boston: Birkhauser) pp 55-78
[7] Koornwinder T H 1990 Orthogonal Polynomials: Theory and Practice ed P Nevai (NATO ASI Ser. C294, Kluwer) pp 257-92
[8] Noumi M and Mimachi K 1991 Duke Math. J. 63 65-80
[9] Bateman H and Erdelyi A Higher Transcendental Functions vol 3
[10] Alhassid Y, Gursey F and Iachello F 1983 Ann. Phys., NY 148 346-80
[11] Turbincr A V 1988 Commun. Math. Phys. 118 467-74
[12] Macdonald I G 1989 Orthogonal polynomials associated with root systems Preprint Queen Mary College
[13] Zabrodin A V 1992 Modern Phys. Lett. A 7441 -6
Freund P G O and Zabrodin A V 1992 Commun. Math. Phys. 147 277-94

[^0]: § Permanent address: ITEP, B. Cheryomushkinskaya 25, Moscow, 117259, Russia.
 || Permanent address: Institute of Chemical Physics, Kosygina 4, Moscow, 117334, Russia.

